
Denoising Diffusion Implicit Models

Generative Modelling: Project report

Thomas Dujardin, Julien Gaubil, Thibault Richard

1 Denoising Diffusion Implicit Models

1.1 Background and motivations

Denoising Diffusion Implicit Models (DDIM) [10] are a development from their precursor, Denoising
Diffusion Probabilistic Models (DDPM) [5]. In this subsection, we provide a short introduction to
DDPMs.

DDPM - forward & backward At the core of DDPMs lies a Markovian forward diffusion process
that gradually introduces noise to the data, represented as x0:

q(xt|xt−1) = N (
√
αtxt−1, (1− αt−1)I) then q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (1)

where q(x1:T |x0) is the inference distribution over the latent variables x1:T . This leads to:

q(xt|x0) = N
(√

ᾱtx0, (1− ᾱtI)
)

⇐⇒ xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (2)

where αi = 1 − βi and ᾱt =
∏t

i=1 αi. A backward process q(xt−1|xt) is established using Bayes’
theorem, yielding a closed formula:

q(xt−1|xt) = N (µ̃t(xt, x0), β̃tI)

Since the original data x0 is unknown during generative process, i.e. the transition from the latent
space to the image distribution q(x0), an estimation of the backward process is needed. This is
particularly challenging as the mean of the process depends on x0.

DDPM objective To address this, a parametric process is implemented to estimate the back-
ward process as accurately as possible. This parametric backward process estimation is written as
pθ(x0:T) := p(xT)

∏T
t=1 pθ(xt−1|xt) with pθ(xt−1|xt) = N (µθ(xt, t),Σθ). As described in [5] [eq. 3], θ

is learned using a variational bound on the negative log-likelihood. This variational bound is tractable
and can be minimized with respect to θ:

E(−log pθ(x0)) ≤ Eq(x0:T)

(
−log

pθ(x0:T)

q(x1:T |x0)

)
︸ ︷︷ ︸

ELBO

(3)

The ELBO can be rewritten in a more convenient way that involves KL divergences, that do not
depend on the forward process used, but only of the conditionals q(xt|x0):

Eq[DKL (q (xT | x0) ∥p (xT))︸ ︷︷ ︸
LT

+
∑
t>1

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt))︸ ︷︷ ︸
Lt−1

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

] (4)

1

The authors of DDPM chose to keep a fixed variance, leading to a formula for the K-L Divergence
(which is the loss function at time t, Lt−1) that depends solely on the means of the Gaussians. It
can further be reframed using a reparametrization trick based on 2’s stochastic formulation. The goal
becomes learning a noise function ϵθ(xt, t) that can best approximate ϵ from 2:

Lt−1 = ||ϵ− ϵθ(xt, t)||22
Once ϵθ is learned, the backward process is employed for inference. This process is Markovian:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz with z ∼ N (0, I)

The stochastic term σtz, where σt fixed hyperparameters, is linked to the fixed variance in pθ(xt−1, xt).

Motivations Despite their impressive photorealistic generated samples, DDPMs suffer from a major
limitation: they require a large number of sampling steps T (typically 1000) to approximate a Gaussian
reverse process. Due to the Markovian nature of DDPM’s backward process, skipping too many steps
during inference results in performance degradation. Generating one sample is therefore extremely
long, (around 1 second for a 32 × 32 image), which scales with the resolution of the images. DDPM
are in particular orders of magnitude slower than their GANs and VAEs counterparts.

1.2 Details

Overview Denoising Diffusion Implicit Models (DDIMs) address this issue by employing a different,
non-Markovian diffusion process that enables skipping many steps during denoising. DDIMs share the
same objective function as DDPMs during training, while providing faster sampling using the same
training objective as DDPMs.

Non-Markovian forward process DDIMs forward process is non-Markovian since each latent
variable xt depends not only of xt−1 but also on x0. The generative (backward) transitions are indeed
defined as:

qσ(xt−1|xt, x0) = N
(
√
αt−1x0 +

√
1− αt−1 − σ2

t .
xt −

√
αtx0√

1− αt
, σ2

t Id

)
(5)

where σ ∈ (R+)
D is an hyperparameter. The inference distribution is then defined using a backward

probabilistic decomposition of qσ(x1:T |x0):

qσ(x1:T |x0) = qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt, x0) (6)

The forward process can then be derived using Bayes’ rule and is indeed non-Markovian. Using a
non-Markovian forward process enables to model a larger families of forward processes that include
the family of Markovian forward processes. In particular, it also models diffusion process whose
reverse process is a shorter chain. This process is designed so that the conditional qσ(xt|x0) matches
the DDPM case, eq.2. Authors show that the choice of the mean function in eq.5 enables for the
conditional qσ(xt|x0) to match with eq.2.

Backward process When sampling from the backward process, the initial data x0 is unknown.
Therefore, similar to DDPMs, the noise function ϵ at step t from eq.2) is approximated using a
parameterized Neural Network ϵθ(xt, t). Using eq.2, the initial data x0 can then be approximated by

the function fθ(xt, t) =
xt−

√
1−αtϵθ(xt,t)√

αt
.

From the transition qσ(xt−1|xt, fθ(xt, t)), the DDIM backward process can then be derived as:

2

xt−1 =
√
αt−1fθ(xt, t) +

√
1− αt−1 − σ2

t ϵθ(xt, t) + σtϵt, ϵt ∼ N (0, I) (7)

This expression clearly shows that σ controls the stochasticity in the generative process: σ = 0
leads to a deterministic forward process. The latent variable xt−1 is indeed entirely determined by the
knowledge of xt−1, and then by induction ∀1 ≤ t ≤ T, xt is entirely determined by the knowledge of
xT , that is sampled according to a Gaussian prior N (0, I).

Objective function The marginals p
(t)
θ (xt−1|xt) and the generative process pθ(x0:T) are defined by:

p
(t)
θ (xt−1|xt) =

{
N
(
fθ(x1, 1), σ2

1I
)

if t = 1

qσ (xt−1|xt, fθ(xt, t)) else
then pθ(x0:T) = pθ(xT)

T∏
t=1

p
(t)
θ (xt−1|xt) (8)

The latent variables qσ,τ (x0:T) and the DDIM generative inference process pθ(x0:T) being fixed,
similar to DDPMs, the DDIM objective Jσ(ϵθ) is defined according to eq.3. Since conditionals
qσ(xt−1|xt, x0) and qσ(xt−1|xt, fθ(xt, t)) are Gaussians, this leads to a closed formula. Authors show
that it is equivalent to the DDPM objective. This important property implies that a DDIM generative
process can be used over an already trained DDPM model. Since the backward process is not sampled
during training, one can define different DDIM models without having to re-train the weights θ by
changing σ.

Accelerated generative process The main advantage of DDIM lies in the fact that it is possible to
accelerate the generative sampling by only performing a subsequence τ of the steps. Indeed, DDIMs are
trained with an objective that is equivalent to the DDPM objective. As discuted in eq.4, this objective
does not depend on the forward transitions q(xt|xt−1), but only on the conditionals qσ(xt|x0). Since
the forward process is not Markovian anymore, it is possible to consider forward processes defined
on a subsequence τ of the steps whose length is typically smaller than T without suffering from the
degradation that would occur in DDPMs, while still having a T latent variables model x1:T . This in
turn accelerates the generative process, whose length would be S = |τ |.

Formally, the forward process is defined by {xτ1 , ..., xτS}, with the conditionals qσ(xτs |x0) that
match eq.2. The generative process then becomes xτS , ..., xτ1 . It is therefore possible to consider
for the DDIM accelerated inference distribution over the latent variables qσ,τ (x0:T) and the DDIM
generative inference process pθ(x0:T):

qσ,τ (x0:T) = qσ,τ (xτS)
∏S

s=1 qσ,τ (xτs |xτs−1
, x0)

∏
t∈τ̄ qσ,τ (x0|xt)

pθ(x0:T) = pθ(xT)

S∏
s=1

pθ(xτs−1
|xτs)︸ ︷︷ ︸

sampled during generative process

∏
t∈τ̄

pθ(x0|xt)︸ ︷︷ ︸
not sampled

(9)

where τ̄ = {1, ..., T} \ τ . The variational objective can then be derived using eq.3, which is the
same formula as DDPM/non-accelerated DDIM. The latent variables xt, t ∈ τ̄ are not sampled during
the accelerated generative process, but are however still used in the objective.

Similar to the non-accelerated DDIMs, authors show that plugging the DDIM accelerated inference
distribution over the latent variables qσ,τ (x0:T) and the DDIM accelerated generative process pθ(x0:T)
in the objective eq.3 is equivalent to DDPM objective. This enables to use the accelerated DDIM
procedure to sample from an already trained DDPM model. Same as non-accelerated DDIMs, different
accelerated DDIMs can be defined by modifying σ or τ without re-training the model.

1.3 Results

Authors evaluate their methods on datasets CelebA, CIFAR10 and Bedrooms, using FID metric. To
perform their experiments, they use a DDPM model trained with T = 1000 steps.

3

Subsampling influence They first evaluate the influence of the subsampling used over the quality
of the generated samples. They show that the quality increases with the length of the subsequence
used τ , but so does the time to generate a sample. Specifically, using 20 to 100 steps in the subsequence
yields comparable sample quality to original DDPMs while enabling a 10 − 50× generation speedup
over DDPMs. They mention that even though DDPM could achieve satisfying results with fewer steps
(typically 100), DDIMs show similar quality using less steps (20 steps). Meanwhile, DDPM achieve by
far the worst quality in this low regime number of steps (between 10-50 steps) compared to its ”less
stochastic” counterparts (i.e. when decreasing the magnitude of σ).

Latent representation, interpolation Starting from the same initial state xT and applying de-
terministic generative process with different subsequences τ leads to images having the same high-level
features. This indicates that xT would capture a latent representation of the images, and that the
generative process would affect the details that impact the sample quality. Finally, when using a de-
terministic generative process, it becomes possible to obtain a meaningful interpolation in the image
space from an interpolation in the latent space, which authors demonstrate qualitatively.

1.4 Limitations and following work

As previously mentioned, the sequential nature of both DDPM and DDIM inhibits their potential for
parallelization. Observing this limitation, Pokle et al. [8] proposed an innovative solution known as
Deep Equilibrium DDIMs (DEQ-DDIM). They achieved parallelization of DDIM sampling by refor-
matting the deterministic backward process of DDIM into a fixed-point problem across the entire chain
(x0:T). They then applied black-box fixed point solvers to this restructured problem. As a result, a
significant increase in inference speed was realized.

DEQ-DDIM is designed to address two challenges in diffusion: standard sampling for FID evalua-
tion and model inversion. For the purpose of demonstrating DEQ-DDIM’s effectiveness and for clarity,
we will focus on the latter, model inversion.

Model Inversion Given an image x0 ∈ D and a denoising diffusion model ϵθ(xt, t) trained on D, the
aim is to find a x̂⋆

T ∼ N (0, I) such that x̂0 minimizes L(x0, x̂
⋆
0) = ||x0 − x̂0||2F . In other words, we are

looking for the latent representation x̂⋆
T that is the closest to the original image when passed through

the backwards process. We will see that an appropriate reformulation of DDIM allows to solve this
problem much faster than with the simple DDIM-subsampling algorithm.

Reformulating DDIM using DEQs DEQ-DDIM [8] proposes to redefine the generative (back-
wards) process of DDIM as a problem of finding a fixed point. More precisely, the authors start from
the original generative process of DDIMs:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
+
√
1− αt−1ϵ

(t)
θ (xt), t ∈ [1, ..., T] (10)

Rewriting 10 yields:

xT−k =

√
αT−k

αT
xT +

T−1∑
T−k

√
αT−k

αt
c
(t+1)
1 ϵ

(t+1)
θ (xt+1) = h(xT−(k−1):T), k ∈ [0, ..., T] (11)

Where c
(t)
1 is a constant depending on αt. xt now depends on xt+1:T instead of only xt+1. With

h̃(.) denoting the operation h(.) applied to all timesteps simultaneously, we have:

x0:T−1 = h̃(x0:T−1;xT) (12)

Which is a DEQ [2] with xT ∼ N (0, I) as an input. The entire chain x⋆
0:T corresponding to this

input is found by computing x⋆
0:T = Solver(h̃(x0:T−1;xT)−x0:T−1), where Solver is any efficient solver.

DEQ’s paper suggests using Anderson’s solver [1] which is a quasi-Newton method.

4

Finding x⋆
T by gradient descent The previous DEQs formulation allows to define an efficient

gradient descent method on the loss function L. As described in [2], one can use the implicit function
theorem on the computed fixed point x⋆

0:T to derive the gradients of the loss w.r.t. any latent state
x1, ..., xT :

∀k ∈ [1, ..., T],
∂L
∂xk

= − ∂L
∂x⋆

0:T

J̃
∂h̃(x⋆

0:T ;xT)

∂xk
(13)

Where J̃ is either a well-conditioned approximation of the inverse Jacobian of h̃(x0:T−1;xT)−x0:T−1

at x⋆
0:T , or simply the identity matrix I (1-step gradient). In the end, we obtain an optimal x⋆

T .

Advantages of the DDIM-DEQ formulation, results By integrating DEQ with DDIM, we
can calculate all equilibrium points concurrently (i.e., solving all xT−(k−1) = h(xT−k), k ∈ [1, ..., T]
simultaneously). This improves the estimation of intermediate latent states xt and accelerates the
convergence towards x0. As a result, this approach eliminates the need for sequential sampling and
introduces a parallel method that can utilize multiple GPUs to perform mini-batches computations,
significantly increasing computational speed.

Comparing DDIMs to DEQ-DDIMs in terms of speed and precision on multiple datasets (such as
CIFAR, CelebA, ...) with varying amounts of sampling steps shows the superiority of DEQ-DDIMs
over DDIMs on the given task of model inversion, as shown in figure 1 :

Figure 1: Results obtained by DDIM (Baseline) and DDIM-DEQ. Source: [2]

2 Theoretical study

2.1 Derivation and analysis of the forward Process

In this section we compute the forward process to establish the non markovian property of this process.
From the conditional q(xt|x0) and the marginals qσ(xt−1|xt, x0) defined eq.5 that verify the conditional
qσ(xt|x0) = N (

√
ᾱtx0, (1− ᾱtI)) (eq.2), we want to deduce qσ(xt|xt−1, x0).

For that we will use the property (2.115) of [4]. Denoting Γ−1 = (1 − αt)I, µt =
√
αtx0, A =√

1−αt−σ2
t

1−αt
I, b = µt−1 − µt√

1−αt
, L−1 = σ2

t I, Σ = σ2
t

1−αt

1−αt−1
I yields:

qσ(xt|xt−1, x0) = N
(
Σ[ATL(xt−1 − b) + Γµt],Σ

)
.

After some computations, we show that

Σ[ATL(xt−1 − b) + Γµt] =

√
1− αt − σ2

t

1− αt−1

[
√
1− αt(xt−1 − µt−1) +

(
1 +

σ2
t√

1− αt − σ2
t

)
µt

]

=

√
1− αt − σ2

t

1− αt−1

[
√
1− αtxt−1 +

√
αt

(
1 +

σ2
t√

1− αt − σ2
t

−
√
αt−1√
αt

)
x0

]

5

So we can conclude that

xt =

√
1− αt − σ2

t

1− αt−1

[
√
1− αtxt−1 +

√
αt

(
1 +

σ2
t√

1− αt − σ2
t

−
√
αt−1√
αt

)
x0

]
+

√
σ2
t

1− αt

1− αt−1
ϵ (14)

with ϵ following a standard gaussian distribution. When σt = 0, (14) becomes:

xt =

√
1− αt

1− αt−1

[√
1− αtxt−1 +

(√
αt −

√
αt−1

)
x0

]
It is clear that whenever

√
αt

(
1 +

σ2
t√

1−αt−σ2
t

−
√
αt−1√
αt

)
̸= 0, the law of xt depends on x0 and so (xt)

is non markovian.

2.2 Deterministic sampling vs Stochastic sampling

Knowledge distillation The deterministic DDIM sampling procedure has beeen used in several
applications. Indeed, a deterministic procedure enables to use the DDIM as a Teacher model for
knowledge distillation in a student model. This knowledge distillation procedures aims at building a
function whose output distribution would approximate the output distribution of the teacher model.
Using a stochastic sampler in such a setting would make this task a lot more difficult. This idea has
been leveraged in [6] that aims at accelerating the generative process, DDIM still requiring between
20 and 100 steps to generate a sample.

Their idea is to use knowledge distillation with a DDIM teacher to enable generation in a single
step while preserving sample quality by compressing the knowledge of the teacher DDIM. Specifically,
they aim at matching the distribution pstudent(x0|xT) with pteacher(x0|xT), which is enforced by a
Kullback-Leibler divergence loss. The two models being gaussian, this results in maximizing the
closed form:

Lstudent =
1

2
E[∥µstudent(xT)− µteacher(xT)∥22] + C,

where µ denotes the mean of the Gaussian. This ultimately lead to a 1000× speed-up over the
original DDPM, 100× speedup over the 100-step DDIM teacher, and is slightly faster than state-of-the
art VAE NVAE [11]. This yields relatively good sample quality while still lower than the DDIM teacher
used. The student model also incorporates its teacher interpolation properties.

This idea has further been expanded in [9] that is motivated by the fact that the training process
described in [6] requires sampling the entire teacher model process to generate training samples, which
can be particularly long. To alleviate this, they propose a progressive distillation scheme, still using
a DDIM teacher. At a given iteration, a N−steps DDIM student will be trained to approximate a
2N − step DDIM teacher while maintaining sample quality. By iterating this process K times, they
ultimately decrease the number of steps by a factor 2K , leading to a generative process that maintains
sample quality while generating samples in as few as 4 steps. Instead of the original data x0, the target
x̃ of the student model enhances a step of the student DDIM to match two steps of the teacher DDIM.
This is achieved for:

x̃ =
zt−1/N − (σt−1/N/σt)zt

αt−1/N − (σt−1/N/σt)αt

where zt−1/N is sampled by the teacher model from zt in two steps t − 0.5/N then t − 1/N .
Performing this indeed does not require to sample the whole backward chain of the teacher model
during training, performing a constant number of sampling steps that does not depend on the number
of steps of used by the teacher. After convergence, the student becomes the teacher of a N/2−step
DDIM.

6

Latent representation and interpolation Unlike DDPMs, DDIMs can represent images in a
latent space by the forward process. This deterministic sampling procedure also enables interpolation
in the latent space between latent codes that results in meaningful interpolation in the image space,
which again is impossible with stochastic sampling.

Sample diversity The main advantage of stochastic sampling however lies in the fact that it in-
creases sample diversity, which is a desirable property of a generative model. Particularly, the fact that
DDPM do not suffer from classical mode collapse issues probably favored their adoption over GANs,
that are known to suffer from such mode collapse, which highly reduces the sample diversity. This has
for instance been recently studied in [3].

2.3 Gamma-DDIM

In this subsection, we attempt to derive Gamma-DDIMs using [7] as a starting point. This is, to
the best of our knowledge, the first attempt to derive Gamma-DDIMs. What follows is therefore an
original derivation.

Explications In the original DDIM paper, the backward transitions qσ(xt−1|xt, x0) (eq.5) are de-
rived so that the conditionals qσ(xt|x0) verify eq.2, as in DDPM. Using properties of the multivariate
Gaussian distributions, the update rule for the backward process is derived in eq.7. Here, we do a
similar reasoning as we look for an update rule for the backward that is of the desired form (eq.24)
whose conditionals qσ(xt|x0) verify eq.2. Using properties of the Gamma laws, we will then derive the
backward marginals (eq.29).

Deriving backward We are aiming to find (Ct)t=0,...,T , (Dt)t=0,...,T such that

xt−1 = Ct−1xt +Dt−1x0 + σt(gt − E(gt)) (15)

Where gt ∼ Γ(kt, θt), θt =
√
ᾱtθ0, αt = 1 − βt, ᾱt =

∏T
i=1 αi, and kt = βt

αtθ0
, so as to impose a

backward process whose marginals can be written as [7]’s marginals for a Gamma-DDPM, i. e.

xt =
√
ᾱtx0 + (ḡt − E(ḡt)) (16)

Where k̄t =
∑t

i=1 ki and ḡt ∼ Γ(k̄t, θt). We present the detailed derivation in Annex 4.1 in the

appendix. Using a constraint over kt that is kt+1 =
∑t

i=1 ki, we find, for Ct and Dt:

Ct =

√
ᾱt − σt+1

√
ᾱt+1√

ᾱt+1(1 +
√
ᾱt)

and Dt =
ᾱt + σt+1

√
ᾱt+1

1 +
√
ᾱt

(17)

Hence the backward process for Gamma-DDIM:

xt−1 =

√
ᾱt−1 − σt

√
ᾱt√

ᾱt(1 +
√
ᾱt−1)

xt +
ᾱt−1 + σt

√
ᾱt

1 +
√
ᾱt−1

x̂0,t + σt(gt − E(gt)) (18)

Where x̂0,t =
xt−(ḡt−k̄tθt)√

ᾱt
is an estimation of x0 at time t that has to be learned.

Backward marginals We then obtain the backward marginals using Gamma law properties:

qσ(xt−1|xt, x0) =
(xt−1 − Ct−1x0 −Dt−1xt + σtk̄tθt)

k̄t−1 e(−(xt−1−Ct−1x0−Dt−1xt+σtk̄tθt)/(σtθt))

Γ(k̄t)(σtθt)k̄t
(19)

7

From this equation, it is possible to see that the conditional of ft−1,x0,xt(xt−1) w.r.t. x0, xt follows
a Gamma law Γ(k̄t, σtθt) where ft,y,z(x) = x − Cty −Dtz + σt+1k̄t+1θt+1. Putting all together leads

to a Gamma-DDIM generative process pθ(x0:T) defined with eq.8, apart from p
(1)
θ (x0|x1) that verifies:

p
(1)
θ (x0|x1) =

(x0 − 1√
ᾱ1

x1 +
k̄1θ1√
ᾱ1

)k̄1−1 e

(
−(x0− 1√

ᾱ1
x1+

k̄1θ1√
ᾱ1

))/(
θ1√
ᾱ1

)
)

Γ(k̄1)(
θ1√
ᾱ1

)k̄1

Attemps to derive the objective The objective function to be minimized in θ can be written
exactly like in the Gaussian DDIM’ case i.e.:

Ex0:T∼q(x0:T)

[
T∑

t=2

DKL (qσ(xt−1 | xt,x0) ∥p(t)θ (xt−1 | xt))− log p
(1)
θ (x0 | x1)

]
(20)

When dealing with Gaussian marginals qσ(xt−1 | xt,x0 and p
(t)
θ (xt−1 | xt), the KL divergences

have a closed formula and the objective can therefore be straightforwardly reformulated. However, in
our scenario, as previously described, the marginals are not Gamma distributed. It’s a transformation
of these marginals that follow a Gamma distribution. The transformation applied is not identical for
pθ and qσ, which complicates the process. As a result, we cannot simply apply a variable substitution
in the integral defining the Kullback-Leibler (KL) divergence to compute it by bringing ourselves back
to the known Gamma case.

Limitations A limitation of our derivation is that it requires a constraint on the shape parameter
k of the Gamma noise employed, which would quickly explode with our formulation. A derivation
that do not exploit such a constraint would be an interesting development of this project. The lack
of closed formula also limits the application of our work. A direct compute of the integral defined by
the KL divergence with the marginals obtained might enable such a closed formula. It would then be
interesting to see if it is equivalent to Gamma-DDPM case.

3 Experiments

3.1 Experimental setting

Implementation details We conducted all our experiments using the CIFAR10 training dataset,
which comprises 50,000 images, each of size 64x64 pixels, spanning across 10 distinct classes.

Our computations were executed on the ”Ruche” cluster provided by Université Paris-Saclay. Uti-
lizing the capabilities of an NVIDIA Tesla A100 GPU, we were able to generate 50,000 samples from
the CIFAR10 dataset in a time-efficient manner, with the whole process taking roughly 30 minutes.

To evaluate the quality of our data distribution approximation, we employed the Fréchet Inception
Distance (FID). This metric is commonly adopted in image generation tasks for its effectiveness in
measuring the resemblance between generated images and original data.

Methodology In our experiments, we tried to answer the following question: which properties
should a ”good” subsampling approach verify?

We tested three different subsampling approaches, that we compared against the quadratic sub-
sampling done in the DDIM paper:

• First, we explored an ’exponential’ subsampling method, which extends the idea underlying
quadratic subsampling—increasing sampling density as we approach the data distribution. In
this approach, we used powers of 2 as the steps within the 0 to 1000 range (including 0 and
1000), resulting in a total of 12 steps.

8

• Additionally, we implemented a more ’aggressive’ adaptation of this principle. We experimented
with sampling just the first 100 and last 100 steps of the backward process, and in another
setup, solely the last 100 steps. The purpose of these experiments was to examine the effects of
bypassing a substantial number of samples at once.

3.2 Using alternative subsampling methods

As mentioned previously, DDIM enables significant subsampling during the backward process. Since
the backward process transforms Gaussian samples into a more intricate distribution, it is logical to
require more samples as it approaches the data distribution. Consequently, the linear subsampling
method described in the DDIM paper may not be the optimal choice in terms of speed or accuracy
for a given number of steps. Subsampling, in this context, is intimately related to the discretization
step of the underlying Ornstein-Uhlenbeck (OU) process that simulates temporal evolution of noise.
The step size crucially influences the level of detail and accuracy captured by the model, thereby
determining the necessary number of steps. Using smaller step sizes in the backward process closer
to the distribution of the original image x0 while using bigger steps at the beginning of the backward
process is a commonly used strategy.

In the same way, an adaptive subsampling strategy could potentially provide benefits by bypassing
inconsequential variations in noise while focusing more on substantial changes. In this subsection, we
examine alternative subsampling approaches that utilize a total of T timesteps (typically, T = 1000)
and S subsampled timesteps (commonly, S = 100).

Quadratic Subsampling This subsampling technique, which is in-built in the DDIM framework,
involves the following sequence of steps:

xi where xi =

(√
S · 0.8
T − 1

· i

)2

for i = 0, 1, 2, . . . , T − 1 (21)

Each term in the sequence is rounded to the nearest integer. Owing to the convexity of the function
x → x2, this results in a higher number of steps closer to the data distribution and fewer during the
”noisy” phase.

Last 100 Steps Subsampling This sampling strategy, xlast100, involves drawing a sample from the
Gaussian noise (at step T − 1) and directly progressing to the final 100 samples:

x := [0, 1, ..., 98, 99, 1000] (22)

This technique effectively bypasses the majority of the noisy segment of the process.

Exponential Subsampling Analogous to the quadratic method, the exponential subsampling strat-
egy uses the function S ∈ N → 2S , while retaining the first and last steps:

xexp := [0, 1, 2, 4, 8, ..., 512, 1000] (23)

Results The results of this investigation are presented in Table 1.
It appears that quadratic subsampling provides an optimal balance between maintaining regularity

in subsampling and reducing the number of steps at the beginning of the generative process, when
the distribution is close to a Gaussian noise. The method whose number of steps is concentrated
both at the beginning and the end of the generative process (First100Last100) yields the worst result,
which is expected by the analogy with the step size previously mentioned. Sampling many steps at
the beginning of the generative process is indeed not really helpful.

We also notice that methods whose subsampling is the least regularly spaced provide the worst
results. These methods typically sample too many steps at beginning and the end of the backward

9

Method FID Score on CIFAR10 Steps
Last 100 33.8 102
Exp 49.4 12
First100Last100 161.9 200
Quadratic DDIM (10 steps) 13.36 10
Quadratic DDIM (100 steps) 4.16 100

Table 1: Comparison of FID scores for various methods on CIFAR10

process, but have a weak approximation of the transition between the extremities, that is too impor-
tant to be correctly approximated in a single step.

From our experiments, it therefore seems that an ideal subsampling strategy would result in a
tradeoff between regularly-spaced subsampling and concentration of the steps at the end of the gen-
erative process, close to the image distribution x0. The strategy experimented that gathers these
characteristics is the quadratic one, and it indeed yields the best results.

References

[1] Donald G. Anderson. Iterative procedures for nonlinear integral equations. J. ACM,
12(4):547–560, oct 1965.

[2] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[3] Reza Bayat. A study on sample diversity in generative models: GANs vs. diffusion models. In
International Conference on Learning Representations TinyPapers, 2023.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[6] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[7] Eliya Nachmani, Robin San Roman, and Lior Wolf. Non gaussian denoising diffusion models.
arXiv preprint arXiv:2106.07582, 2021.

[8] Ashwini Pokle, Zhengyang Geng, and J Zico Kolter. Deep equilibrium approaches to diffusion
models. Advances in Neural Information Processing Systems, 35:37975–37990, 2022.

[9] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022.

[10] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[11] Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In Neural
Information Processing Systems (NeurIPS), 2020.

10

4 Appendix

4.1 Gamma-DDIM backward derivation

We are aiming to find (Ct)t=0,...,T , (Dt)t=0,...,T such that

xt−1 = Ct−1xt +Dt−1x0 + σt(gt − E(gt)) (24)

Where gt ∼ Γ(kt, θt), θt =
√
ᾱtθ0, αt = 1 − βt, ᾱt =

∏T
i=1 αi, and kt = βt

αtθ0
, so as to impose a

backward process whose marginals can be written as [7]’s marginals for a Gamma-DDPM, i. e.

xt =
√
ᾱtx0 + (ḡt − E(ḡt)) (25)

Where k̄t =
∑t

i=1 ki and ḡt ∼ Γ(k̄t, θt). Replacing xt in 24 by its expression in 25 yields:

xt−1 = (Ct−1

√
ᾱt +Dt−1)x0 + Ct−1(ḡt − E(ḡt)) + σt(gt − E(gt))

Which gives a system to solve for Ct and Dt ∀t ∈ [0, ..., T]:{√
ᾱt+1Ct +Dt =

√
ᾱt

(ḡt − E(ḡt)) = Ct(ḡt+1 − E(ḡt+1)) + σt+1(gt+1 − E(gt+1))

But, ḡt+1−E(ḡt+1) =
√
ᾱt+1(ḡt−E(ḡt))+ gt+1−E(gt+1). By taking (kt) such that

∑t
i=1 ki = kt+1

(i. e. kt = 2max(0,t−2)k1):

ḡt − E(ḡt) = Ct(
√
ᾱt+1(ḡt − E(ḡt)) + gt+1 − E(gt+1)) + σt+1(gt+1 − E(gt+1))

⇔ (a.s.)

√
ᾱtθ0Zt+1 = Ct(

√
ᾱt+1

√
ᾱtθ0Zt+1 +

√
ᾱt+1θ0Zt+1) + σt+1

√
ᾱt+1θ0Zt+1

Where Zt+1 + kt+1 follows a Γ(kt+1, 1). Therefore, we have for Ct:

Ct =

√
ᾱt − σt+1

√
ᾱt+1√

ᾱt+1(1 +
√
ᾱt)

(26)

And for Dt:

Dt =
ᾱt + σt+1

√
ᾱt+1

1 +
√
ᾱt

(27)

Hence the backward process for Gamma-DDIM:

xt−1 =

√
ᾱt−1 − σt

√
ᾱt√

ᾱt(1 +
√
ᾱt−1)

xt +
ᾱt−1 + σt

√
ᾱt

1 +
√
ᾱt−1

x̂0,t + σt(gt − E(gt)) (28)

Where x̂0,t =
xt−(ḡt−k̄tθt)√

ᾱt
is an estimation of x0 at time t that has to be learned.

Backward marginals We can therefore obtain the backward marginals:

qσ(xt−1|xt, x0) =
(xt−1 − Ct−1x0 −Dt−1xt + σtk̄tθt)

k̄t−1 e(−(xt−1−Ct−1x0−Dt−1xt+σtk̄tθt)/(σtθt))

Γ(k̄t)(σtθt)k̄t
(29)

From this equation, it is possible to see that the conditional of ft−1,x0,xt
(xt−1) w.r.t. x0, xt follows

a Gamma law Γ(k̄t, σtθt) where ft,y,z(x) = x − Cty −Dtz + σt+1k̄t+1θt+1. Putting all together leads

to a Gamma-DDIM generative process pθ(x0:T) defined with eq.8, apart from p
(1)
θ (x0|x1) that verifies:

11

p
(1)
θ (x0|x1) =

(x0 − 1√
ᾱ1

x1 +
k̄1θ1√
ᾱ1

)k̄1−1 e

(
−(x0− 1√

ᾱ1
x1+

k̄1θ1√
ᾱ1

))/(
θ1√
ᾱ1

)
)

Γ(k̄1)(
θ1√
ᾱ1

)k̄1

12

