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1 Introduction

1 Introduction
This study is based on the first article on knockoffs [2]. The idea is to contextualize
and enlighten the reader on the theory and the proofs on which this theory is based as
well as to understand the measures of its application in particular on the identification of
dynamic system.

1.1 General context

1.1.1 High dimensional statistics

One of the problems encountered in high dimensional statistics is variable selection. In
particular, a well-studied problem is when we look for the explanatory variables of a linear
model. A well known solution is then the linear regression which is equivalent to its least
squares formula:

x̂ = min
x∈Rp

∥y − Ax∥22

We have a matrix A of size p×n, but in high dimension statistics we have a flat matrix,
that is to say p ≫ n. Then the problem can be ill-posed, the system is underdetermined
and so we have an infinity of solutions. A solution to this problem is to add constraints,
in our case we are interested in a sparsity constraint. In order to implement this sparsity
constraint we can add a condition on the norm ℓ0 of the regression vector, the Lagrangian
version of the problem is then:

x̂ = min
x∈Rp

∥y − Ax∥22 + λ∥x∥0

This problem being NP-hard, we can relax the constraints, it is the lasso approach
(Least Absolute Shrinkage and Selection Operator) developed by Robert Tibshirani by
replacing the norm ℓ0 by the norm ℓ1.

x̂ = min
x∈Rp

∥y − Ax∥22 + λ∥x∥1

This problem has no closed form solution, but fortunately it is a convex problem an can
be solved by gradient descent algorithms. As the ℓ1 norm is not derivable on zero, another
way of solving this convex problem is through proximal algorithms, as the proximal of
the ℓ1 norm can be computed and it corresponds to a soft thresholding. The iterative
shrinkage-thresholding algorithm (ISTA) is the forward-backward iterative scheme for
the lasso. A more recent version improves the rate of convergence of ISTA: FISTA (Fast
ISTA). Orthogonal Matching Pursuit is an other algorithm that solves the ℓ1 regularized
problem, however, here, one provides the number of non-null hypothesis.

The lasso is a way to select variables that have an effect on y, from null variables that
are independant on y. It depends on both noise and correlation between variables but in
actually, the lasso does not necessarily cover the real explanatory variables. In particular,
there is an explicit trade-off between FDP and True Positive proportion (TPP) (being
the fraction of true positive discovered) [13].
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1 Introduction

1.1.2 False Discovery Rate

In statistics, when we test a hypothesis, we work under the null hypothesis, often called
H0. The idea is then to calculate, knowing that the null hypothesis is true, the probability
of observing the observed data. If this probability is below a certain threshold value, we
reject it. The p-value corresponds to the smallest threshold value for which we would
reject the null hypothesis. Then we could define two types of error: the type I error, that
is to say a false positive, that is to say that we reject the null hypothesis when it is true.
Then a type II error corresponds to a false positive, that is to say that we accept the
null hypothesis when it is false. One of the objectives of statistical testing is to control
these errors. The threshold to reject the test is determined by 1−α, then the type I error
can be controlled by α, this latter corresponds to the probability of type I error. The
probability of type II error is β, it is often harder to control because we the alternative
hypothesis can be anything.
The idea of False Discovery Rate (FDR) is to generalize the type I error when testing mul-
tiple hypothesis: it is the proportion of false discoveries among the discoveries (rejections
of the null hypothesis). It can be written as follow:

FDR = E
[

V

V + S

]
where V is the number of false discoveries and S is the number of true discoveries.

FDR and its importance in different applications (example genes, alleles and disease).
The control of the FDR is particularly important in certain applications such as biology,
where we are trying to understand whether certain genes are linked to certain diseases.
We therefore want to avoid targeting genes that have nothing to do with the disease and
we try to control the FDR to do so.

A common procedure to control the FDR is the Benjamini Hochberg (BHq) proce-
dure [3]. The procedure is the following: given Z-scores Z1, · · · , Zp corresponding to p
hypotheses such that Zj ∼ N (0, 1) if the jth hypothesis is null. We then define a data
dependent threshold T for a desired level q of FDR control:

T = min

{
t :

p · P {|N (0, 1)| ≥ t}
# {j : |Zj| ≥ t}

}
Then the procedure rejects pj for Zj ≥ T .
One constraint is that the Z-scores have to follow a normal law, the knockoffs offer a

more general framework. This won’t be developed in the present study but one can prove
that the knockoffs procedure and the BHq are equivalent in the orthogonal design setting
[2].

1.1.3 Dynamic systems

The mathematical approach to the study of dynamical systems goes back to the beginning
of physics, notably with Galileo and Newton. For simple systems, we can find the laws
governing the dynamical system by applying the laws of physics, for example the laws of
gravitation to an object in free fall is sufficient to predict its evolution knowing the initial
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1 Introduction

conditions. On the other hand, at other scales, the equations governing a dynamical
system cannot be deduced from a traditional physical approach. For example, we can
think of the meteorological models developed by Lorenz in the 1950s and the whole theory
of chaotic systems [12]. An approach that is gaining importance in recent years has been
enabled by the developments of data science, it is to infer the laws of a system from data
and with very little a priori.

An object in motion can then be described by a system of ordinary differential equa-
tions. We restrict ourselves to this framework, but note that other mathematical frame-
works can describe dynamical systems.

dx

dt
= f(x(t), u(t))

y = g(x(t), u(t))

Recent developments in control engineering have made many efforts to apply data
science principles to engineering problems, such as system identification and control [4].
Some of these include: Compressive sensing, Tailored sensing, sparse sensors placement,
dynamic mode decomposition and Sparse identification of nonlinear dynamics (SINDy)
that we describe here.

The field of system identification takes roots in control theory, where the purpose
is to identify the system in order to better control it. It aims at establishing a model
from time series observations of the system. This field has grown into a multidisciplinary
field that concerns statistics, machine learning, and is applied in control engineering and
econometrics [10].When the functions g and f are linear, the problem can be solved and
has been extensively studied [10], however when they are nonlinear the problem is much
more involved and still a challenge for most of the cases [11].

1.2 Presentation of the Knockoffs

The article focuses on False discovery in variable selection for a linear model [2]. In the
case of variable selection, for a linear relation, we have

y = Xβ + z

In the article setup, we need 2p ≤ n, an thus we are not in the so called high dimen-
sion context, further developments of the knockoffs have been applied to high dimension
statistics. The FDR in this case is the expected proportion of selected variables that
correspond to null variable βj = 0 among all the selected variables. Let the selection
procedure return a subset Ŝ ⊂ {1, · · · , p}

FDR = E

[
j : βj = 0 and j ∈ Ŝ

j : j ∈ Ŝ ∨ 1

]
The objective is to follow a selection procedure that upper bounds the FDR with

a given level q. In this setup, the different variables have a correlation structure given
by Σ = XTX, the idea of knockoff is to create another set of variables X̃ that have a
similar correlation structure but that the correlation between the original variable and its
knockoff is weak.
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1.2.1 A way to build knockoffs and define statistics

We need to build the knockoff so that they satisfy the previous statistics. In the case of
variable selection for the linear regression, we can build it as follow:

Step 1: Building the knockoffs We build the knockoffs X̃ so that we have the
following correlation matrices:

X̃T X̃ = Σ and XT X̃ = Σ− diag(s)

with s ∈ Rp
+. We are looking for the largest s to ensure good statistical power, in

other words we are looking for knockoffs that are the most uncorrelated from the original
variables while respecting the given correlation structure. To construct X̃, choose s ∈ Rp

+

satisfying diag(s) ⪯ 2Σ. Let Ũ ∈ Rn×p the orthonormal matrix orthogonal to the span of
the features X, and C ∈ Rp×p such that CTC = 2diag(s)− diag(s)Σ−1diag(s). Then we
can define the knockoffs of X to be:

X̃ = X(I − Σ−1diag(s)) + ŨC

Step 2: Compute a statistics The statistics Wj,∀j ∈ {1, · · · , p}. The statistic j
allows to determine if a variable is considered as non null, in particular a large Wj value
is in favor of an alternative hypothesis of the null hypothesis βj = 0. We consider the
lasso model defined previously and the vector β̂(λ)

β̂(λ) = argmin
b∈Rp

{
1

2
∥y −

[
XX̃

]
b∥22 + λ∥b∥1

}
We define a first statistics Zj = sup

{
λ : β̂j(λ) ̸= 0

}
. This yields a vector (Z1, · · · , Zp, Ẑ1, · · · , Ẑp).

Then for all j in {1, · · · , p} we define the statistics W

Wj = max(Zj, Z̃j) ·


+1 if Zj > Z̃j

−1 if Zj < Z̃j

0 if Zj = Z̃j

Step 3: Choose model (in other words, the level of FDR to control) The
procedure is as follow: we select Wj such that Wj ≥ T for T a data dependent threshold
defined as follow:

T = min

{
|Wk| :

1 + | {j/Wj ≤ −|Wk|} |
max(1, | {j/Wj ≥ −|Wk|} |)

≤ q

}
Then, the FDR is controlled at a level q.
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2 Theory and details of selected proofs

1.2.2 Limits of the 2015 paper

The original paper paved the theory for further development of the knockoffs, however
some issues may be to solve. First we need p ≤ n (presented framework 2p ≤ n and
extension for p ≤ n ≤ 2p), one would need to extend the problem to actual high dimension
statistics when p ≥ n to apply in particular in gene/disease problems.
Then the procedure to build knockoffs is restricted to linear models (we need the sufficiency
property). This could be extended to any other models as long as the knockoff properties
are verified.

1.2.3 State of the art

Extension were realized to build knockoffs for a linear model in high dimensions p ≥ n
[6].

2 Theory and details of selected proofs
The proof will treat the case where the number of observation n and the number of
variable p verify n ≥ 2p.

2.1 Construction of the Knockoff

We consider in this section a design matrix X ∈ Mn,p(R) whose columns are l2-normalized.
Let’s note Σ = XTX the covariance-variance matrix of X.

We want to create a knockoff version X̃ of the design matrix X that verifies XTX =
X̃T X̃ and XT X̃ = XTX − diag(s) where s ∈ Rp. It means that X and X̃ share the same
correlation structure except for the diagonal terms where XT

j X̃j = 1− sj

Definition 2.1 (equi-correlated Knockoffs). The sj are chosen to be all equals to min(2λmin, 1)
where λmin is the minimal eigenvalue of Σ. It minimizes | < Xj, X̃j > |.

Definition 2.2 (Semi-definite Program Knockoffs). The knockoffs are selected so that the
mean correlation between X and X̃ is minimal, which is equivalent to the SDP problem :{

min
s

∑
j |1− sj|

s.t.. sj ≥ 0, diag(s) ≤ 2Σ

Proposition. For both Knockoff constructions presented, diag(s) ≤ 2Σ and the covari-

ance matrix of the augmented design, G =
[
XX̃

]T [
XX̃

]
, is symetric semi-definite posi-

tive. Then, for a matix C given by a Cholesky decomposition of Σ− (Σ−diag(s))Σ−1(Σ−
diag(s)), for an orthnormal matrix Ũ ∈ Mn,p(R) s.t. XT Ũ = 0, X̃ = X(I−Σ−1diag(s))+
ŨC satisfies the desired covariance structure.
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Proof.

G =

(
Σ Σ− 2diag(s)

Σ− diag(s) Σ

)
By Schur complement property,

G =

(
Σ Σ− 2diag(s)

Σ− diag(s) Σ

)
G≥ 0 ⇐⇒ A = Σ−(Σ−diag(s))Σ−1(Σ−diag(s)) ≥ 0 ⇐⇒

(
Σ diag(s)

diag(s)

)
≥ 0

Then G ≥ 0 ⇐⇒

{
diag(s) ≥ 0

2Σ ≥ diag(s)

diag(s) ≤ 2Σ clearly by definition of equi-correlated and SDP Knockoffs, and in both
cases diag(s) ≥ 0, therefore G ≥ 0 for equi-correlated and SDP Knockoffs.

A ≥ 0, let C ∈ Mp(R) so that the Cholesky decomposition of A gives A = CTC
Since n ≥ 2p, it is possible to find Ũ ∈ Mn,p(R) orthonormal s.t. ŨTX = 0.
Then, with X̃ = X(I − Σ−1) + ŨC satisfies the covariance structure:

XT X̃ = Σ− ΣΣ−1diag(s) +XT ŨC = Σ− diag(s)

and

X̃TX = Σ− diag(s)Σ−1Σ− ΣΣ−1diag(s) + diag(s)Σ−1ΣΣ−1diag(s) + CT ŨT ŨC

= Σ− diag(s)− diag(s) + diag(s)Σ−1diag(s) + 2diag(s)− diag(s)Σ−1diag(s) = Σ

2.2 The statistic W

Definition 2.3 (sufficiency property). The statistic W is said to be sufficient if it is a

function only of the Gram matrix of the augmented design, G =
[
XX̃

]T [
XX̃

]
and of

the scalar products between features and response XTy.

Definition 2.4 (antisymmetry property). ∀S ⊂ [p], swapping Xj and X̃j in the aug-
mented design matrix

[
XX̃

]
changes the sign of Wj, the j-th component of the statistic

W constructed.

Definition 2.5 (apparition of a variable in the Lasso). For the Lasso problem where the
estimator is given by : β̂(λ) = argmin

b
{1
2
||y −Xb||2 + λ||b||1}, we introduce as Zj the λ

for which the variable Xj first enters the model. Zj = sup{λ/β̂j(λ) ̸= 0}
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Proposition. The statistic (Z1, ..., Zp, Z̃1, ..., Z̃p) is computed on the augmented design[
XX̃

]
. ∀ j ∈ [p], let Wj = max(Zj, Z̃j)× (−1(Zj<Z̃j)

+ 1(Zj>Z̃j)
. Then W = (W1, ...,Wp)

satisfies the sufficiency and anti-symmetry properties.

Proof. The lasso problem is equivalent to min
b

1
2
bTXTXb − bTXTy + λ∥b∥1, which is a

function of XTX and XTy. W therefore satisfies the sufficiency property.

It is clear from the construction of W that it satisfies the antisymmetry property.

Lemma 2.1. Let ϵ ∈ {−1, 1}p a sequence of signs independent of the components Wj of
the statistic W , so that ϵj = 1 for all j ∈ [p] s.t. βj ̸= 0 and ϵp −→ {−1, 1} ∀j s.t. βj = 0.
Then the equality in law (W1, ...,Wp)

d
= (W1ϵ1, ...,Wpϵp) holds.

The proof is available in the supplementary information.

Proposition. ∀j s.t. βj = 0, the signs of the Wj are i.i.d. and sign(Wj) ∼ 1
2
δ−1 +

1
2
δ1.

They are also independent of the signs sign(Wi) ∀i s.t. βi ̸= 0, and independent of the
|Wj| ∀j ∈ [p].

2.3 p-values for the Knockoffs

In this part we consider m = | {j/Wj ̸= 0} |. The method indeed never selects a variable
of index j so that Wj = 0, they can therefore be neglected. We can, without loss of
generality, consider |W1| ≥ |W2| ≥ ... ≥ |Wm|.

Definition 2.6 (p-values). ∀j ∈ [m] (the indexes s.t. Wj ̸= 0), we define the p-value

pj =

{
1
2

if Wj > 0

1 if Wj < 0

Proposition. The p-values {pj/j ∈ [m], βj = 0} are i.i.d. and follow the law 1
2
δ 1

2
+ 1

2
δ1.

They are also independent of the sign(Wi) ∀i s.t. βi = 0.

Proof. ∀j s.t. βj = 0, sign(Wj) are i.i.d. and follow the law 1
2
δ−1 +

1
2
δ1, then those pj

clearly follow the law 1
2
δ 1

2
+ 1

2
δ1 by definition.

The sign(Wj) s.t. βj = 0 are independent from the sign(Wi) s.t. βi ̸= 0. It follows
that pj s.t. βj = 0 are independent from the pi s.t. βi ̸= 0.
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Proposition (stochastic dominance of the p-values). ∀j ∈ [m] s.t. βj = 0, ∀u ∈

[0, 1], P (pj ≤ u) ≤ u, which we denote pj
d

≥ U([0, 1]).

Proof. Clear because ∀j ∈ [m], ∀u ∈ [0, 1
2
[, P(pj ≤ u) = 0 ≤ u and ∀u ∈ [1

2
, 1[, P(pj ≤

u) = 1
2
≤ u, and P(pj ≤ 1) = 1.

2.4 Sequential procedure

The following definition is provided in a general setting:

Definition 2.7 (sequential procedure for p-values). We consider the test hypothesis
H1, ..., Hm where ∀i ∈ [m], (Hi) : βi = 0. The associated p-values are denoted pj. If
pj > c, we accept (Hi), otherwise we reject (Hi). Let K ⊂ [m] and q a control rate.

1. we first calculate

k̂1 = max{k ∈ K/
1 + | {j ≤ k/pj > c} |

max(1, | {j ≤ k/pj ≤ c} | )
× c

1− c
≤ q}

2. ∀j ∈ K s.t. j ≤ k̂1, pj ≤ c, we reject (Hj) =⇒ βj ̸= 0.

Proposition (Link with Knockoffs and T ). With T = min{|Wk|/ 1+| {j/Wj≤−|Wk|} |
max(1, | {j/Wj≥−|Wk|} |) ≤

q}, m = | {j/Wj ̸= 0} | and if the Wi are ordered by decreasing magnitude |W1| ≥ |W2| ≥
... ≥ |Wm|, then ∀j ∈ [m], Wj ≥ T ⇔ j ≤ k̂1 and pj ≤ 1

2

Proof. We apply the procedure provided by the previous definition with
K = {k ∈ [m]/|Wk| > |Wk+1|} ∪ {m} and a threshold c = 1

2
:

Then we have by definition:

k̂1 = max{k ∈ K/
1 + | {j ≤ k/pj >

1
2
} |

max(1, | {j ≤ k/pj ≤ 1
2
} | )

≤ q}

= max{k ∈ K/
1 + |{j/Wj ≤ −[Wk|}|

max(1, |{j/Wj ≥ −|Wk|}|)
≤ q}

by definition of K, and the fact that the (Wk)k∈K are ordered in non-decreasing order.
It comes from the fact that the (Wk)k∈K are ordered in non-decreasing order :

k̂1 = argmin
k

{|Wk|/
1 + | {j/Wj ≤ −[Wk|} |

max(1, | {j/Wj ≥ −|Wk|} |)
≤ q}
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If we pose T = min{|Wk|/ 1+| {j/Wj≤−[Wk|} |
max(1, | {j/Wj≥−|Wk|} |) ≤ q}, we have by the decreasing order

of magnitude of the Wi:

∀j ∈ [m], Wj ≥ T ⇔ j ≤ argmin
k

{|Wk|/
1 + | {j/Wj ≤ −[Wk|} |

max(1, | {j/Wj ≥ −|Wk|} |)
× ≤ q} and Wj ≥ 0

⇔ j ≤ k̂1 and Wj ≥ 0 ⇔ j ≤ k̂1 and pj ≤
1

2

which concludes the proof.

2.5 Control of the FDR for the Knockoffs

We still consider m = |{j/Wj ̸= 0}| and |W1| ≥ |W2| ≥ ... ≥ |Wm|. We consider
K = {k ∈ [m]/|Wk| > |Wk+1|} ∪ {m}.

Lemma 2.2. ∀k ∈ [m], let V +(k) = | {1 ≤ j ≤ k/βj = 0, pj ≤ c} | and V −(k) =
| {1 ≤ j ≤ k/βj = 0, pj > c} | with the convention V ±(0) = 0. Let Fk = σ(

⋃
j∈[m]

σ(pj) ∪⋃
k′≥k

σ(V ±(k
′
))) which defines the filtration in reversed time (Fk)k=m,...,1. Let M(k) =

V +(k)
1+V −(k)

. Then (M(k))0≤k≤m is a super-martingale (in reversed time) w.r.t. the filtration
(Fk)0≤k≤m.

For the procedure previously described with k̂1, we also have E[M(k̂1)] ≤ c
1−c

.

Proof. (Fk)0≤k≤m clearly is a filtration in inverse time.
∀k ∈ [m], M(k) = V +(k)

1+V −(k)
clearly is Fk-measurable by definition of Fk.

Let k ∈ [m].
If βk ̸= 0, we clearly have V +(k) = V +(k − 1) and V −(k) = V −(k − 1).
Else, if βk = 0,

M(k − 1) =
V +(k)− 1pk≤c

1 + V −(k)− 1pk>c

=
V +(k)− 1pk≤c

1 + V −(k)− (1− 1pk≤c)
=

V +(k)− 1pk≤c

V −(k) + 1pk≤c)

The authors state that P (1pk≤c) =
V +(k)

V +(k)+V −(k)
and deduce that

E[M(k − 1)|Fk] =

{
V +(k)

1+V −(k)
= M(k) if V −(k) > 0

V +(k)− 1 = M(k)− 1 if V −(k) = 0

and it comes

E[M(k − 1)|Fk] =


M(k) if βk ̸= 0

M(k) if βk = 0, V −(k) > 0

M(k)− 1 if βk = 0, V −(k) = 0

We therefore have E[M(k−1)|Fk] ≤ M(k), which proves that (M(k))0≤k≤m is a super-
martingale (in reversed time) w.r.t. the filtration (Fk)0≤k≤m.
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k̂1 clearly is a (Fk)-stopping time :

∀k ∈ [m], (k̂1 ≤ k) =
⋂

k≤j≤m

(
1 + | {j ≤ k/pj > c} |

max(1, | {j ≤ k/pj ≤ c} | )
× c

1− c
> q) ∈ Fk

clearly by definition of Fk.

By the optional stopping theorem (since k̂1 is clearly bounded), it comes that E[M(k̂1)] ≤
E[M(m)] since (M(k))k∈[m] is a super-martingale in inversed time.

Let Y be a random variable that follows the binomial law of parameters N = |{j/βj =

0}| and c, B(N, c). It follows from the stochastic dominance ∀j t.q. βj = 0, pj
d

≥ U([0, 1])

that V +(m)
d

≤ B(N, c). Then, ∀k ∈ [m], P (V + (m) k) ≤ P (Y > k). What’s more,
V −(m) = N − V +(m) and since x −→ x

1+N−x
is a non-decreasing function, it comes :

E[M(k̂1)] ≤ E[M(m)] = E[
V +(m)

1 +N − V +(m)
] ≤ E[

Y

1 +N − Y
] =

∑
1≤i≤N

P (Y = i)
i

1 +N − i

=
∑

1≤i≤N

ci (1− c)N−i N !

i!(N − i)!

i

1 +N − i
=

c

1− c

∑
1≤i≤N

ci−1 (1− c)N−i+1 N !

(i− 1)!(N − i+ 1)!

=
c

1− c

∑
1≤i≤N

P (Y = i− 1) ≤ c

1− c

which concludes the proof.

Theorem 2.3. If, ∀j ∈ [m] (s.t. βj = 0), the p-values pj are i.i.d., verify the stochas-

tic dominance pj
d

≥ U([0, 1]), and are independent from the sign(Wi) ∀ βi s.t. βi ̸= 0.
Then the selection procedure described with k̂1 that selects a model of support Ŝ verifies
E[ V

max(1,R)
] ≤ q where R = |Ŝ| is the number of variables selected and V = | {j ∈ Ŝ/βj =

0} | is the number of false discoveries.

Proof.

E[
V

max(1, R)
] = E[

| {j ≤ k̂1/βj = 0, pj ≤ c} |
1 + | {j ≤ k̂1/βj = 0, pj > c} |

× 1 + | {j ≤ k̂1/βj = 0, pj > c} |
max(1, | {j ≤ k̂1/ pj ≤ c} | )

]

By definition of k̂1,

1 + | {j ≤ k̂1/βj = 0, pj > c} |
max(1, | {j ≤ k̂1/ pj ≤ c} | )

≤ 1− c

c
× q
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3 Knockoffs applied to System identification

And by the previous lemma :

E[
| {j ≤ k̂1/βj = 0, pj ≤ c} |

1 + | {j ≤ k̂1/βj = 0, pj > c} |
] = E[M(k̂1)] ≤

c

1− c

Hence the result

E[
V

max(1, R)
] ≤ c

1− c

1− c

c
× q = q

Proposition (Control of the FDR for knockoffs). We suppose the Wi ordered by de-
creasing magnitude |W1| ≥ |W2| ≥ ... ≥ |Wm|. The procedure of selection of Knock-
offs defined by Ŝ = {j/Wj ≥ T} where T is a data-depending threshold defined by
T = min{|Wk|/ 1+| {j/Wj≤−|Wk|} |

max(1, | {j/Wj≥−|Wk|} |) ≤ q} enables a control of the FDR at the level q
: E[FDR] ≤ q

Proof. Ŝ = {j/Wj ≥ T} = {j/j ≤ k̂1, pj ≤ 1
2
} by a result previously proved. The

selection of the model Ŝ therefore corresponds to the selection procedure described for
the p-values with the threshold c = 1

2
.

Then

FDR = E[
| {j ≤ k̂1/βj = 0, pj ≤ 1

2
} |

max(1, | {j ≤ k̂1/ pj ≤ 1
2
} | )

] = E[
V

max(1, R)
]

The p-values pj ∀j t.q. βj = 0 are i.i.d. and verify the stochastic dominance pj
d

≥
U([0, 1]). They are also independent from the sign(Wi) ∀i t.q. βi ̸= 0. The previous
theorem therefore provides :

FDR ≤ q

3 Knockoffs applied to System identification

3.1 Approach by Brunton et al.[5]

3.1.1 Problem

The system identification problem consists in building mathematical models of dynamical
systems based on observed data from the system. More precisely, by looking at how the
system evolves over time, we can try to infer a model with little a priori information. It
is thus one type of inverse problem. One recent approach is inspired by the developments
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3 Knockoffs applied to System identification

and different applications of the lasso [5]. We will show that it is a linear regression
problem with a parsimonious overlapping vector where it can be solved with the lasso.
We will then focus on controlling the FDR through knockoffs.

We first consider a fully observed nonlinear dynamic system with unkown dynamics
f .

dx

dt
= f(x(t))

3.1.2 Solution

We have discrete measurements of this system that we store in the following matrix:

X =


xT (t1)

.

.

.
xT (tn)


with xT (tk) = [x1(tk), ... , xm(tk)].
And we calculate the derivatives of the measurements. Different approaches can be

used such as the finite differences. If the data is noisy, it can be smoothed, different
methods exist [7]

Ẋ =


ẋT (t1)

.

.

.
ẋT (tn)


ẋT (tk) = [ẋ1(tk), · · · , ẋm(tk)]
We define a dictionnary of function Θ(X):

Θ(X) =


...

...
...

...
...

1 XP2 XP3 · · · cos(X) · · ·
...

...
...

...
...


with Ξ = [ξ1, ξ2, · · · , ξm] and ξk = [ξk,1, ξk,2, · · · , ξk,p]. The dictionary base depends on

the system studied and requires the knowledge of the expert. One condition is that the
system equations are expected to be sparse in the whole dictionary, allowing thus to use
sparse promoting regressions as the lasso, with ξk being sparse vectors.

We can see in this case that we have the following linear system to solve:

Ẋ = Θ(X)Ξ

Separating for each dimension of the dynamical system we obtain the following equa-
tions for its dynamics:

ẋk = fk(x) = Θ(xT )ξk
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3 Knockoffs applied to System identification

And for the whole system:

ẋ = f(x) = ΞTΘ(XT )T

For this study we will use the chaotic nonlinear Lorenz system described with the
following nonlinear equations: 

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

x

10
0

10
y

20
10

0
10

20

z

10

20

30

40

Lorenz system

Figure 1: Simulation of a chaotic system: the Lorenz system. This simulation
correspond to the training set in the following section

We will use the Python package PySindy to simulate and store the dynamic models
used in [8].

3.1.3 Selection of the model and cross validation

argmin
x∈Rn

∥Ax− b∥22 + λ2∥x∥0

As noted in the introduction, the common practice of parameter selection in data
science is by cross-validation. It is a reliable procedure whose principle is to separate the
data to have a training set and a testing set. The training set allows to fit the parameters
of the model, for example to find the explanatory variables of the linear model here,
and the testing set allows to check that the model can generalize to new data and thus
avoid over fitting. An other way that is common in applied mathematics and statistics is
information criteria that we won’t use here.
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3.1.4 Improvements over the original method

The original using a λ threshold scan, we implement a lasso path using the LARS from
scikit learn that makes the simulations faster. We can compare the performance from the
original method is similar to ours using the lasso path and the fitting the 3 derivatives
corresponding to the dimensions independently in the supplementary results.

3.2 Implementations

We simulate the Lorenz system for two different starting point. Each set consists of
n = 500 time points with dt = 0.01. For the function library we took the poly-
nomial library up to order 4, meaning all the polynomial from order 0 to order 4:
1, x, y, z, x2, xy, xz, y2, · · · , z4 .

We realize a lasso path on each dimension x, y and z of the problem independently
(figure 2). We then realize a cross-validation independently for each dimension of the
system on a test (figure 3). By choosing the best λ (which may be different for each
dimension) we obtain the following model:


ẋ = −4.298x+ 7.582y − 0.175xz + 0.001y2 + 0.035yz + 0.011x3

ẏ = 0.126 + 12.969x+ 6.456y + 0.072xy − 0.101xz − 0.040y2 − 0.326yz − 0.016x3

−0.014xz2 + 0.001x3z
ż = −2.699z + 0.898xy + 0.111y2
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Figure 2: Lasso path for the three dimensions

We can compare the recovered model and the system on the training set for example
(similar results on the testing set) (figure 4 and 5). We can see that in spite of the errors in
the recovery of the support the predictions are rather good, in spite of deviations from the
real system it seems that the model is found the right attractor, that it escapes sometimes
and joins the real system.
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Figure 3: Cross-validation on the computed derivative testing set. The cross-validation
is independent for the three dimensions and can lead to different optimal λ
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Figure 4: Simulation of the identified model, and comparisons with the training dataset
in three dimensions. The simulation is given the same starting point as the training

dataset and simulated for the same duration and time step.
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(b) Correlation matrix for SDP knockoffs

Figure 6: Correlation matrices [XX̃]T [XX̃] for a polynomial library of order 4 on the
Lorenz system for SDP and equicorrelated knockoffs
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Figure 5: Simulation of the identified model, and comparisons with the training dataset.
The simulation is given the same starting point as the training dataset and simulated for

the same duration and time step.

3.2.1 Building knockoffs and challenges

Once we have our dictionary matrix, we can build the knockoff using the equicorrelated
or the SDP procedure. We then plot the pairs (Zj, Z̃j) (figure 7 and 8). As we can see
many points stand on the x = y line, meaning that the knockoffs enter the model at the
samte time as their original counterpart on the lasso path. In our case it is because the
knockoffs and the original variable are the same vector. Obviously this will prevent the
knockoff procedure to give us reliable results for variable selection as you can see in the
next part.
One explanation comes from the property of the original covariance matrix and the knock-
off design. Remember that we have:

[XX̃]T [XX̃] =

[
Σ Σ− diag(s)

Σ− diag(s) Σ

]
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3 Knockoffs applied to System identification

The knockoff variable should be uncorrelated from its original variable but not from
the other variable. In particular, if Xj is highly correlated with Xi, then X̃j should be
highly correlated with Xi, and we can see that it will be harder for X̃j to be uncorrelated
with its original variable Xj. We plot to covariance matrix of the augmented matrix
[XX̃]T [XX̃] for the equicorrelated and SDP knockoffs (figure 6). One can compare these
results with the random gaussian matrix one in the supplementary results to see why it
is a drawback.
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Figure 7: Equicorrelated knockoff plotting pairs (Zj, Z̃j) for the polynomial 4
dictionnary matrix
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Figure 8: SDP knockoff plotting pairs (Zj, Z̃j) for the polynomial 4 dictionnary matrix

From our experience with the application and for a future work, it would be interesting
to think about a way to measure the power of the knockoffs related to the coherence of
the matrix given a procedure to build knockoffs. We know for example that the coherence
is linked to the eigenvalues using the Gershgorin’s disk theorem [9], this would help to
bound the equicorrelated knockoffs vector s, and then one may be able to measure the
power of the knockoffs.

3.2.2 Type I and type II error consequences

Since the the knockoffs were build very poorly, the procedure to control the FDR spans
very uninteresting results, this shows a drawback of the method as it can be seen in figure
9 and 10.
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Figure 9: Evolution of the True Positive Proportion and the actual False Discovery
Proportion using the equicorrelated knockoff procedure for the three different

dimensions (x on the left, y on the middle and z on the right)
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Figure 10: Evolution of the True Positive Proportion and the actual False Discovery
Proportion using the SDP knockoff procedure for the three different dimensions (x on

the left, y on the middle and z on the right)

3.3 Limits for its use in dynamic systems identification

The applications of knockoffs have been tested in particular to discover the genes involved
in certain diseases [1]. This can be justified because it seems important not to target
genes that do not cause the disease in order to avoid the toxicity of treatments, so it
seems that this is the most important value to control. In the case of the identification
of dynamic systems, and more particularly of non-linear functions, if we want to make
good predictions, we need to recover the support exactly. We would then need to study
tools to guarantee the recovery support of the vector. Results show that using only the
lasso will result in a compromise between the TPP and the FDR [13], so it may not be
the ideal framework. Further investigations will be conducted to study more closely the
guarantee of these two conditions, but also to what extent false negatives or false positives
differentiate the model from the exact system in the case of polynomial functions.

4 Conclusion
In this study, we have unrolled the theory for someone who would like to understand the
ins and outs. Then we illustrate with two applications, the identification of dynamical
systems and random gaussian matrices.
The knockoffs framework is a clever and innovative statistical one that has been and will
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References

be further developed in other papers. It can be used in many framework as this area of
statistical learning expands in many area of science (biology, engineering...). In particular
further developments include different ways to build knockoff that may changed on the
context (type of model, high dimensions...), assessing quality of the original matrix to
build consistent knockoffs, controling the True Positive Proportion.
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5 Supplementary information and simulations

5.1 Original method using ℓ0 regularization

The lasso is not used on the original paper, instead a ℓ0 regularized problem is used:

x̂ = argmin
x∈Rn

∥Ax− b∥22 + λ2∥x∥0

To solve the problem they use the STLSQ (Sequentially thresholded least squares
algorithm) that is guaranteed to converge toward a local minimum [14]. The steps are
computed as follow:

x0 = A†b

Sk =
{
j ∈ [n] : |xk

j | ≥ λ
}
, k ≥ 0

xk+1 = argmin
x∈Rn,supp(x)⊆Sk

∥Ax− b∥2k ≥ 0

Instead of computing a lasso path using the LARS method, we do a λ threshold
scanning, then we do a cross correlation as before. There are a few differences: first the
sparsity level and cross validation is made on the three dimensions at the same time while
they were done on each dimension independently in when we used the lasso, then we can
also cross validates by computing the whole trajectory of X since we evaluate the three
functions corresponding to the three dimensions at the same time. We obtain similar
results than with the lasso in the main text.
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Figure 11: Pseudo path for the three dimensions using a λ threshold scan for
λ ∈ [10−1, 103]
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10 1 100 101 102 103

105

106

X 
M

SE

10 1 100 101 102 103

106

107

X 
M

SE

Figure 12: Cross-validation on the computed derivative testing set. The cross-validation
is independent for the three dimensions and can lead to different optimal λ

The advantage to use the full simulation is from the fact that the model slightly
deviates it may be a problem because the system is chaotic, when taking the full simulation
we avoid this by comparing the whole simulation. We obtain the following equations:

ẋ = 6.424y − 0.485xz + 0.083yz + 0.006xz2

ẏ = 18.610x− 0.253y +−0.040xz2 + 0.001xz3

ż = −2.418z + 0.181x2 + 0.769xy + 0.055y2 − 0.011z2
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Figure 13: Simulation of the identified model, and comparisons with the training dataset
in three dimensions. The simulation is given the same starting point as the training

dataset and simulated for the same duration and time step.
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Figure 14: Simulation of the identified model, and comparisons with the training
dataset. The simulation is given the same starting point as the training dataset and

simulated for the same duration and time step.

5.2 Unpublished simulations

Other numerical changes as scaling the system by dividing the range by 10, 30 and 40
which didn’t change much qualitatively the results. Simulations were ran without any
noise, recovery of the true equations but not perfect, running the knockoffs was similar.

5.3 Knockoffs on random matrices

To compare the application to system identification using a dictionary matrix, whose
columns are not independant since they depend on the same variables, we test here on
random Gaussian matrices. We take the same dimensions as in the study: n = 500, p = 35
with each entry of the matrix independently following a normal distribution N (0, 1). We
then pick a vector β with 3 nonnull entries at random positions. These elements follow
independently a uniform law of parameters [−5, 5]. We then compute y = Xβ + η with
η a random gaussian vector of i.i.d. entries following a normal law of standard deviation
0.1 N (0, 0.12)

We can observe that the augmented matrix covariance looks way better than in our
dictionary of polynomial (figure 15), in particular, variables are not highly correlated,
which allows to build decent knockoffs, we can see that SDP knockoffs are slightly more
uncorrelated compared to the equucorrelated knockoffs. This allows to have very few
knockoff that are too correlated from their original variable (figure 17). And plotting the
evolution of the FDR and the TPP we have a better consistence of the knockoff procedure
(figure 16)

5.4 Removing correlated variables

We saw that one of the flaw of using the knockoffs framework on the system identification
problem in the case of the Lorenz system was the matrix condition. In particular, we
can compare the coherence of the two matrices. For the Gaussian matrix, we have a
coherence µ = 0.797 against a coherence of µ = 0.989 for the polynomial dictionary
matrix. A simple first solution would be to remove the very correlated variables. For
pairs of variables whose correlation was above 0.94, the variable corresponding to the
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Figure 15: Correlation matrices [XX̃]T [XX̃] for a gaussian random matrices for SDP
and equicorrelated knockoffs
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(a) Evolution of the True Positive Proportion
and the actual False Discovery Proportion
using the equicorrelated knockoff procedure
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(b) Evolution of the True Positive Proportion

and the actual False Discovery Proportion
using the SDP knockoff procedure

Figure 16: Evolution of the True Positive Proportion and the actual False Discovery
Proportion using the knockoff procedure with a varying parameter q
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(b) SDP knockoff plotting pairs (Zj , Z̃j)

Figure 17: Knockoff plotting pairs (Zj, Z̃j) for the gaussian random matrix case
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Figure 18: Correlation matrices [XX̃]T [XX̃] for a gaussian random matrices for SDP
and equicorrelated knockoffs

higher polynomial order was removed. For thresholds higher than 0.94, nothing changed
drastically, it changes when we remove at 0.94 or lower, however we lose a lot of variables,
including one of the true variable (in particular, the variable x is very correlated with
xz). The results are the following (figures 18, 21, 22, 19, 20). Even though the results
look better thant the first attempts, the number of variables being reduced drastically,
the method looses its interest since we want to look in a potentially big dictionary when
little is known of the system.
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Figure 19: Equicorrelated knockoff plotting pairs (Zj, Z̃j) for the filtered dictionnary
matrix
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Figure 20: SDP knockoff plotting pairs (Zj, Z̃j) for the filtered dictionnary matrix
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Figure 21: Evolution of the True Positive Proportion and the actual False Discovery
Proportion using the equicorrelated knockoff procedure for the three different

dimensions (x on the left, y on the middle and z on the right)
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Figure 22: Evolution of the True Positive Proportion and the actual False Discovery
Proportion using the SDP knockoff procedure for the three different dimensions (x on

the left, y on the middle and z on the right)
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5.5 Proof of Lemma 2.1

Proof. Let S ⊂ [p], and let’s pose
[
XX̃

]
swap(S)

the matrix
[
XX̃

]
so that ∀j ∈ S, Xj

and X̃j are swapped. We first note that
[
XX̃

]T
swap(S)

[
XX̃

]
swap(S)

=
[
XX̃

]T [
XX̃

]
: it

directly comes from the covariance structure properties respected by X̃.

We first prove that if ∀j ∈ S, βj = 0, then the equality in law
[
XX̃

]T
swap(S)

y
d
=

[
XX̃

]
y

holds.
Since y follows a Normal law N( Xβ, σ2I)

[
XX̃

]T
swap(S)

y follows a Normal law

N(
[
XX̃

]T
swap(S)

Xβ, σ2
[
XX̃

]T
swap(S)

[
XX̃

]
swap(S)

).

We have
[
XX̃

]T
swap(S)

[
XX̃

]
swap(S)

=
[
XX̃

]T [
XX̃

]
, hence the equality of the vari-

ances.
Since X̃X = Σ − diag(s), ∀i ̸= j, XX̃T

j Xi = XT
j Xi, and since supp(β) ∩ S =, ∀j ∈

S, X̃T
j Xβ = XT

j Xβ.

Then
[
XX̃

]T
swap(S)

Xβ =
[
XX̃

]T
Xβ, and the equality in law follows.

Let ϵj =

{
−1 if j ∈ S

1 else
then

Then, by antisymmetry property Wswap(S) = (W1ϵ1, ...,Wpϵp).

We now consider ϵ ∈ {±1}p s.t. ϵj = 1 if βj = 0, ϵj ∈ {±1} else. With S = {j/ϵj =
−1}, we have S ∩ supp(β) = and it comes, by sufficiency property of W :

Wswap(S)
d
= f(

[
XX̃

]T
swap(S)

[
XX̃

]
swap(S)

,
[
XX̃

]T
swap(S)

y)

d
= f(

[
XX̃

]T [
XX̃

]
,
[
XX̃

]T
swap(S)

y)

d
= f(

[
XX̃

]T [
XX̃

]
,
[
XX̃

]T
y)

d
= W
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